Reading and writing data

A short description of the post.

  1. Load the R packages we will use.
library(tidyverse)
library(here)
library(janitor)
library(skimr)
  1. Download CO2 emissions per capita from Our World in Data into the directory for this post.

  2. Assign the location of the file to file_csv. The data should be in the same directory as this file.

Read the data into R and assign it to emissions

file_csv  <- here("_posts",
             "2021-02-19-reading-and-writing-data",
             "co-emissions-per-capita.csv")
emissions  <- read_csv(file_csv)
  1. Show the first 10 rows (observations of) emissions
emissions
# A tibble: 22,383 x 4
   Entity      Code   Year `Per capita CO2 emissions`
   <chr>       <chr> <dbl>                      <dbl>
 1 Afghanistan AFG    1949                    0.00191
 2 Afghanistan AFG    1950                    0.0109 
 3 Afghanistan AFG    1951                    0.0117 
 4 Afghanistan AFG    1952                    0.0115 
 5 Afghanistan AFG    1953                    0.0132 
 6 Afghanistan AFG    1954                    0.0130 
 7 Afghanistan AFG    1955                    0.0186 
 8 Afghanistan AFG    1956                    0.0218 
 9 Afghanistan AFG    1957                    0.0343 
10 Afghanistan AFG    1958                    0.0380 
# ... with 22,373 more rows
  1. Start with emissions data THEN

use clean_names from the janitor package to make the names easier to work with assign the output to tidy_emissions show the first 10 rows of tidy_emissions

tidy_emissions  <- emissions %>% 
  clean_names()

tidy_emissions
# A tibble: 22,383 x 4
   entity      code   year per_capita_co2_emissions
   <chr>       <chr> <dbl>                    <dbl>
 1 Afghanistan AFG    1949                  0.00191
 2 Afghanistan AFG    1950                  0.0109 
 3 Afghanistan AFG    1951                  0.0117 
 4 Afghanistan AFG    1952                  0.0115 
 5 Afghanistan AFG    1953                  0.0132 
 6 Afghanistan AFG    1954                  0.0130 
 7 Afghanistan AFG    1955                  0.0186 
 8 Afghanistan AFG    1956                  0.0218 
 9 Afghanistan AFG    1957                  0.0343 
10 Afghanistan AFG    1958                  0.0380 
# ... with 22,373 more rows
  1. Start with the tidy_emissions THEN use filter to extract rows with year == 2019 THEN use skim to calculate the descriptive statistics
tidy_emissions %>% 
  filter(year == 2019) %>%
  skim()
Table 1: Data summary
Name Piped data
Number of rows 221
Number of columns 4
_______________________
Column type frequency:
character 2
numeric 2
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
entity 0 1.00 4 32 0 221 0
code 13 0.94 3 8 0 208 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
year 0 1 2019 0.00 2019.00 2019.00 2019.00 2019.00 2019.00 ▁▁▇▁▁
per_capita_co2_emissions 0 1 5 5.71 0.03 1.12 3.53 6.56 38.61 ▇▂▁▁▁
  1. 13 observations have a missing code. How are these observations different? start with tidy_emissions then extract rows with year == 2019 and are missing a code
tidy_emissions %>%
  filter(year == 2019, is.na(code))
# A tibble: 13 x 4
   entity                     code   year per_capita_co2_emissions
   <chr>                      <chr> <dbl>                    <dbl>
 1 Africa                     <NA>   2019                     1.12
 2 Asia                       <NA>   2019                     4.40
 3 Asia (excl. China & India) <NA>   2019                     4.14
 4 EU-27                      <NA>   2019                     6.56
 5 EU-28                      <NA>   2019                     6.41
 6 Europe                     <NA>   2019                     7.28
 7 Europe (excl. EU-27)       <NA>   2019                     8.33
 8 Europe (excl. EU-28)       <NA>   2019                     9.14
 9 International transport    <NA>   2019                     4.58
10 North America              <NA>   2019                    11.0 
11 North America (excl. USA)  <NA>   2019                     4.63
12 Oceania                    <NA>   2019                    11.2 
13 South America              <NA>   2019                     2.54

Entities that are not coutries do not have country codes.

  1. Start with Tidy_emissions THEN -use filter to extract rows with year == 2019 and without missing codes THEN -use select to drop the year variable THEN -use rename to change the variable entity to country -assign the output to emissions_2019
emissions_2019<-tidy_emissions %>%
  filter(year == 2019, !is.na(code))%>%
  select(-year)%>%
  rename(country = entity)
  1. Which 15 countries have the highest per_capita_co2_emissions?

-start with emissions_2019 THEN -use slice_max to extract the 15 rows with the per_capita_co2_emissions -assign the output to max_15_emitters

max_15_emitters<-emissions_2019 %>%
  slice_max(per_capita_co2_emissions, n =15)
  1. Which 15 countries have the lowest per_capita_co2_emissions?

-start with emissions_2019 THEN -use slice_min to extract the 15 rows with the lowest values -assign the output to min_5_emitters

min_15_emitters<-emissions_2019 %>%
   slice_min(per_capita_co2_emissions, n =15)
  1. Use bind_rows to bind together the max_15_emitters and min_15_emitters -assign output to max-min_15
max_min_15<-bind_rows(max_15_emitters,min_15_emitters)
  1. Export max_min_15 to 3 file formats
max_min_15%>%write_csv("max_min_15.csv") #comma-separated values
max_min_15%>%write_tsv("max_min_15.tsv") #tab separated
max_min_15%>%write_delim("max_min_15.psv", delim = "l") #pipe-separated
  1. Read the 3 file formats into R
max_min_15_csv<-read_csv("max_min_15.csv") #comma-separated values
max_min_15_tsv<-read_tsv("max_min_15.tsv") #tab separated
max_min_15_psv<-read_delim("max_min_15.psv", delim = "l") #pipe-separated
  1. Use setdiff to check for any differences among max_min_15_csv , max_min_15_tsv and max_min_15_psv
setdiff(max_min_15_csv, max_min_15_tsv, max_min_15_psv)
# A tibble: 0 x 3
# ... with 3 variables: country <chr>, code <chr>,
#   per_capita_co2_emissions <dbl>

Are there any differences?

  1. Reorder country in max_min_15 for plotting and assign to max_min_15_plot_data

-start with emissions_2019 THEN -use mutate to reorder country according to per_capital_co2_emissions

max_min_15_plot_data<-max_min_15 %>%
  mutate(country = reorder(country, per_capita_co2_emissions))
  1. Plot max_min_15_plot_data
ggplot(data = max_min_15_plot_data,
       mapping = aes(x = per_capita_co2_emissions, y = country)) +
  geom_col() +
  labs(title = "The Top 15 and 15 per capita CO2 emissions",
       subtitle = "for 2019",
       x = NULL,
       y = NULL)

  1. Save the plot directory with this post
ggsave(filename = "preview.png", 
       path = here("_posts" , "2021-02-19-reading-and-writing-data"))
  1. Add preview.png to yaml chuck at the top of this file

preview: preview.png

Footnotes