A short description of the post.
Download CO2 emissions per capita from Our World in Data into the directory for this post.
Assign the location of the file to file_csv. The data should be in the same directory as this file.
Read the data into R and assign it to emissions
file_csv <- here("_posts",
"2021-02-19-reading-and-writing-data",
"co-emissions-per-capita.csv")
emissions <- read_csv(file_csv)
emissionsemissions
# A tibble: 22,383 x 4
Entity Code Year `Per capita CO2 emissions`
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.00191
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.0130
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.0380
# ... with 22,373 more rows
emissions data THENuse clean_names from the janitor package to make the names easier to work with assign the output to tidy_emissions show the first 10 rows of tidy_emissions
tidy_emissions <- emissions %>%
clean_names()
tidy_emissions
# A tibble: 22,383 x 4
entity code year per_capita_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.00191
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.0130
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.0380
# ... with 22,373 more rows
tidy_emissions THEN use filter to extract rows with year == 2019 THEN use skim to calculate the descriptive statistics| Name | Piped data |
| Number of rows | 221 |
| Number of columns | 4 |
| _______________________ | |
| Column type frequency: | |
| character | 2 |
| numeric | 2 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| entity | 0 | 1.00 | 4 | 32 | 0 | 221 | 0 |
| code | 13 | 0.94 | 3 | 8 | 0 | 208 | 0 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| year | 0 | 1 | 2019 | 0.00 | 2019.00 | 2019.00 | 2019.00 | 2019.00 | 2019.00 | ▁▁▇▁▁ |
| per_capita_co2_emissions | 0 | 1 | 5 | 5.71 | 0.03 | 1.12 | 3.53 | 6.56 | 38.61 | ▇▂▁▁▁ |
tidy_emissions then extract rows with year == 2019 and are missing a code# A tibble: 13 x 4
entity code year per_capita_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Africa <NA> 2019 1.12
2 Asia <NA> 2019 4.40
3 Asia (excl. China & India) <NA> 2019 4.14
4 EU-27 <NA> 2019 6.56
5 EU-28 <NA> 2019 6.41
6 Europe <NA> 2019 7.28
7 Europe (excl. EU-27) <NA> 2019 8.33
8 Europe (excl. EU-28) <NA> 2019 9.14
9 International transport <NA> 2019 4.58
10 North America <NA> 2019 11.0
11 North America (excl. USA) <NA> 2019 4.63
12 Oceania <NA> 2019 11.2
13 South America <NA> 2019 2.54
Entities that are not coutries do not have country codes.
Tidy_emissions THEN -use filter to extract rows with year == 2019 and without missing codes THEN -use select to drop the year variable THEN -use rename to change the variable entity to country -assign the output to emissions_2019emissions_2019<-tidy_emissions %>%
filter(year == 2019, !is.na(code))%>%
select(-year)%>%
rename(country = entity)
per_capita_co2_emissions?-start with emissions_2019 THEN -use slice_max to extract the 15 rows with the per_capita_co2_emissions -assign the output to max_15_emitters
max_15_emitters<-emissions_2019 %>%
slice_max(per_capita_co2_emissions, n =15)
per_capita_co2_emissions?-start with emissions_2019 THEN -use slice_min to extract the 15 rows with the lowest values -assign the output to min_5_emitters
min_15_emitters<-emissions_2019 %>%
slice_min(per_capita_co2_emissions, n =15)
bind_rows to bind together the max_15_emitters and min_15_emitters -assign output to max-min_15max_min_15<-bind_rows(max_15_emitters,min_15_emitters)
max_min_15 to 3 file formatsmax_min_15%>%write_csv("max_min_15.csv") #comma-separated values
max_min_15%>%write_tsv("max_min_15.tsv") #tab separated
max_min_15%>%write_delim("max_min_15.psv", delim = "l") #pipe-separated
max_min_15_csv<-read_csv("max_min_15.csv") #comma-separated values
max_min_15_tsv<-read_tsv("max_min_15.tsv") #tab separated
max_min_15_psv<-read_delim("max_min_15.psv", delim = "l") #pipe-separated
setdiff to check for any differences among max_min_15_csv , max_min_15_tsv and max_min_15_psvsetdiff(max_min_15_csv, max_min_15_tsv, max_min_15_psv)
# A tibble: 0 x 3
# ... with 3 variables: country <chr>, code <chr>,
# per_capita_co2_emissions <dbl>
Are there any differences?
country in max_min_15 for plotting and assign to max_min_15_plot_data-start with emissions_2019 THEN -use mutate to reorder country according to per_capital_co2_emissions
max_min_15_plot_data<-max_min_15 %>%
mutate(country = reorder(country, per_capita_co2_emissions))
max_min_15_plot_dataggplot(data = max_min_15_plot_data,
mapping = aes(x = per_capita_co2_emissions, y = country)) +
geom_col() +
labs(title = "The Top 15 and 15 per capita CO2 emissions",
subtitle = "for 2019",
x = NULL,
y = NULL)

ggsave(filename = "preview.png",
path = here("_posts" , "2021-02-19-reading-and-writing-data"))
preview: preview.png